The Stoke Poges School Calculation Policy

Rationale

This policy outlines a model progression through written strategies for addition, subtraction, multiplication and division in line with the National Curriculum. Through the policy, we aim to link key manipulatives and representations in order that the children can be vertically accelerated through each strand of calculation. We know that school wide policies, such as this, can ensure consistency of approach, enabling children to progress stage by stage through models and representations they recognise from previous teaching, allowing for deeper conceptual understanding and fluency. As children move at the pace appropriate to them, teachers will be presenting strategies and equipment appropriate to children's level of understanding. However, it is expected that the majority of children in each class will be working at ageappropriate levels as set out in the National Curriculum 2014 and in line with school policy. More able learners will be challenged through greater depth - rather than accelerated content, (moving onto next year's concepts). Teachers will set tasks to deepen knowledge and improve reasoning skills within the objectives of their year group

As we plan and sequence our Maths learning with the support of White Rose resources, the strategies are closely aligned with those suggested within White Rose. Whilst the most common strategies have been presented within this document, this list is not exhaustive and teachers should use the White Rose schemes of learning to further support their planning.

The importance of mental mathematics

While this policy focuses on written calculations in mathematics, we recognise the importance of the mental strategies and known facts that form the basis of all calculations. The following checklists outline the key skills and number facts that children are expected to develop throughout the school.

To add and subtract successfully, children should be able to:

- recall all addition pairs to $9+9$ and number bonds to 10
- recognise addition and subtraction as inverse operations
- add mentally a series of one digit numbers (e.g. $5+8+4$)
- add and subtract multiples of 10 or 100 using the related addition fact and their knowledge of place value (e.g. $600+700,160-70)$
- partition 2 and 3 digit numbers into multiples of 100, 10 and 1 in different ways
(e.g. partition 74 into $70+4$ or $60+14$)
- use estimation by rounding to check answers are reasonable

To multiply and divide successfully, children should be able to:

- add and subtract accurately and efficiently
- recall multiplication facts to $12 \times 12=144$ and division facts to $144 \div 12=12$
- use multiplication and division facts to estimate how many times one number divides into another etc.
- know the outcome of multiplying by 0 and by 1 and of dividing by 1
- understand the effect of multiplying and dividing whole numbers by 10,100 and later 1000
- recognise factor pairs of numbers (e.g. that $15=3 \times 5$, or that $40=10 \times 4$) and increasingly able to recognise common factors
- derive other results from multiplication and division facts and multiplication and division by 10 or 100 (and later 1000)
- notice and recall with increasing fluency inverse facts
- partition numbers into $100 \mathrm{~s}, 10$ s and 1 s or multiple groupings
- understand how the principles of commutative, associative and distributive laws apply or do not apply to multiplication and division
- understand the effects of scaling by whole numbers and decimal numbers or fractions
- understand correspondence where n objects are related to m objects
- investigate and learn rules for divisibility

Addition

Key Vocabulary

sum, total, parts and wholes, plus, add, altogether, more, 'is equal to' 'is the same as'

	Concrete	Pictorial	Abstract
Year 1 Adding numbers within 10	Combining two parts to make a whole: part-whole model (use other resources too e.g. eggs, shells, teddy bears, cars)	Children to represent the cubes using dots or crosses. They could put each part on a part whole model too. Expose the children to variations of this model e.g. when the whole is at the top.	$4+3=7$ Four is a part, 3 is a part and the whole is seven.
Year 1 Adding numbers within 10	Counting on using number lines, using cubes or Numicon.	A bar model which encourages the children to count on, rather than count all.	The abstract number line: What is 2 more than 4 ? What is the sum of 2 and 4 ? What is the total of 4 and 2? $4+2$

Year 1 Adding numbers within 20	Regrouping to make 10; using ten frames and counters/ cubes or using Numicon. $6+5$	Children to draw the ten frame and counters/cubes.	Children to show how they regrouped to make 10. Working out could include the following methods: Example: $6+7=13$ Example: $6+8=14$
Year 2 Adding a 2-digit number and a 1digit number	TO + O using base 10 (or other appropriate resources). Continue to develop understanding of partitioning and place value. $41+8$. This could be completed using dienes, counters or other appropriate resources.	Children to represent the base 10 e.g. lines for ten and dot/crosses for ones. Reinforce the understanding of place value with this method by encouraging the children to express how many tens they have and how any ones.	Children to use regrouping to add or a written method, such as column method. If a child is using column method, then it is essential they understand the value of each digit. Column Method Cherry Model

In the drain there are 21 frogs and 34
worms. How many more worms are
there than frogs? How many fewer frogs
are there than worms?

Key Vocabulary

Take away, less than, the difference, subtract, minus, fewer, decrease

Year 1 Finding the difference between numbers (up to 20)	Finding the difference (using cubes, Numicon or Cuisenaire rods, other objects can also be used). Calculate the difference between 8 and 5 .	Children to draw the cubes/other concrete objects which they have used or use the bar model to illustrate what they need to calculate.	Find the difference between 8 and 5. $8-5$, the difference is \qquad Children to explore why $9-6=8-5=7-4$ have the same difference.
Year 1 Subtracting numbers within 20 (crossing 10)	Making 10 using ten frames (or other appropriate resources) $14-5$	Children to present the ten frame pictorially and discuss what they did to make 10	Children to encouraged to show how they can make 10 by partitioning the subtrahend. $14-5=9$
Year 2 Subtracting numbers	Column method using base 10 (or other appropriate resources) $48-7$	Children to represent the base 10 pictorially.	Column method or children could count back 7.

Multiplication

Key Vocabulary

Double, times, multiplied by, the product of, groups of, lots of equal groups

Years 1 - 3 Multiplication through repeated addition (number line method)	Number lines to show repeated groups- 3×4 Cuisenaire rods can be used too.	Represent this pictorially alongside a number line e.g.:	Abstract number line showing three jumps of four. $3 \times 4=12$
Years 1-4 Multiplication through arrays	Use arrays to illustrate commutativity counters. Other objects can also be used. $2 \times 5=5 \times 2$ 2 lots of 5 5 lots of 2	Children to represent the arrays pictorially. 00 00 00 00 00 $\begin{aligned} & 00000 \\ & 00000 \end{aligned}$	Children to be able to use an array to write a range of calculations e.g. $\begin{aligned} & 10=2 \times 5 \\ & 5 \times 2=10 \\ & 2+2+2+2+2=10 \\ & 10=5+5 \end{aligned}$
Year 3-6 Multiplying a 2/3/4-digit number by a 1digit number (no regrouping)	Formal column method with place value counters (or other appropriate resources).	Children to represent the counters pictorially.	Children to record using a formal written method. $\begin{array}{r} 23 \\ \times \quad 3 \\ \hline 69 \\ \hline \end{array}$ They may also be encouraged to show their working out in a variety of ways (e.g. using the distributive law)

Division

Key Vocabulary

Share, group, divide, divided by, half, quotient

